7B00 Endpin Resonance REVIEW

[ 4/10/2023 ]       Labels: 54.Endpin-Resonance4

Cello's resonance body has remarkable abilities that can resonate all/continuous tones, on the other hand, how the endpins are working? We took a review for endpin resonance including our unpublished data.
Resonance mechanisms of endpins are rather simple. It seems simply like rods or pipes. When the given frequency meets the resonance frequency of rod, endpins resonate well. There seems three mechanisms according to the tone area.

[A] At high tone area, the resonance mainly depends on(or in proportion to) the characteristic frequency as a rod/pipe.
[C] At the lowest tones such as C,C#,D on C string, and placed a cello on the floor, the energy of cello resonance can easily leaks to the floor. Because cello body cannot resonate such a long wavelength in itself. As a result the sound weakens and generates interference beats to the floor. We will review it later again.

[B] The dominant mechanism of endpin resonance seems come from the behavior of rods/pipes (two points fixed) between tail-pin and floor. Some important findings are seen here.
(1) Beats in a cycle period are mesured and colored. Endpins can resonate with given tones as single beat( as a same frequency) only above (around) 220Hz. This fatal competence will bring the modern cello a husky/mechanical sound color.
(2) Diagonal-mountains-valley-like resonance pattern tells us something. "Low tone & long endpin" and "high tone & short endpin" are taking a same mechanical resonance beats. Extra length of endpin is probably taking the initiative to the resonance. Heavy metal endpin shows a clearer tendency.
(3) Endpin resonates well at mountains area and less at valleys, sometimes acting as a mute.

チェロの筐体はあらゆる(連続した)ピッチの音を共鳴・増幅できる画期的構造である。筐体よりもはるかに大きい(長い)波長の低音も高音倍音軌道を組み合わせて作り出すことができる。
一方、エンドピンはどうであろうか?。 未投稿のデータも加えて、エンドピンの共振メカニズムをレビューしておこう。
エンドピンの共振は単純である。基本的に「棒・パイプ」の共振である。周波数が合致すれば共振し、合わなければ共振せず逆に消音効果となる。重いエンドピンほど消音効果は大きく、演奏者にとってレスポンスの悪化となる。
エンドピンの共振メカニズムは大きく3つのエリアによって現れ方が異なるようである。
[A]高音エリアではエンドピンという棒の材質に起因する固有振動が強く影響し、n倍の周波数の位置で特に大きく共振するように見える。
[C]低音(C線のC,C#,D,)では、エンドピンが装着され床置きされると、長波長を筐体が筐体内でとどめることができず物理的に床へのリークが発生する。この時床との軌道と筐体の軌道とに波長差が生じ、床を揺らす振動が起こる場合がある。詳細は後日レビューする。
[B]チェロ音域の多く(広く)で起こっているのは、テールピンと床の2点でエンドピンが固定されるために発生する棒としての共振である。共振トーンとエンドピンの(床までの)長さによる測定結果を見ると、幾つかの特徴があることがわかる。
(1) 1周期内で共振するビート数を見ると、「赤1」で示すエリアは、ほぼA(420Hz)あたりよりも高周波域に限定される。つまりエンドピン共振は C,G,D線域のトーンに対して1ビートで共振できない。つまり細かな高音の均一(機械的)振動として共振する。モダンチェロのツーンとした音の原因をもたなしているようだ。
(2)長いエンドピンで低音のときと、短くしたエンドピンで高音の時とで同じ共振をしている。つまりテールピンと床の2点で固定されている棒の振動であり、チェロ内で目に触れない「余長」部分の振動がイニシャチブを取っていると推定される。質量の大きい金属のエンドピンほど明確な傾向が見られる。
(3)強く共振するエリアが縞状に並んでいる。共振する確率としない確率(ミュートとして働く)確率は、50/50と考えるべきである。

7B02 cello resonance チェロ 響き レスポンス endpin エンドピン
7B03 cello resonance チェロ 響き レスポンス endpin エンドピン
7B04 cello resonance チェロ 響き レスポンス endpin エンドピン

7B05 cello resonance チェロ 響き レスポンス endpin エンドピン
7B06 cello resonance チェロ 響き レスポンス endpin エンドピン

9BE.CELLO-RESONANCE II [ Einsatz for Resonance ]

 [ 04/02/2023 ]      Labels:  77c.Resonance-II

Cello can resonate any pitch tone inside the body. Although the longest dimension of body is less than 1 meter, in contrasts the wavelength of the C(66Hz, lowest tone) is 15.2 meter.
It is possible by all long wavelengths being rounded and bent and twisted inside the body.
How it can be done? When the pitch will be settled? The answer seems to be found at the dimension of the body.
There are tremendous number of air atoms inside the body. The resonance inside the body will be amplified up to 20 timed louder or more. The farthest atoms are left apart 2.2 millisecond as sound speed. All influence/resonance need to wait till to be shared the balanced environment (: 2.2 mS).
Musicians well know they need "Einsatz" for tutti. The einsatz needs enough time to compensate the time lag between farthest players and conductor. Likewise, 2 to 3mS seems needed to start the resonance inside the cello body.
When we review the data of resonance, we can find a extended 2(-3)mS period at the forefront of the all oscilloscope charts(of pizzicato). Let say as "Einsatz for resonance". The pitch of each tone seems to be settled almost after "einzatz + tone period".

チェロは 身長1m に満たない筐体内で、最低音(C 66Hz, 波長15.2m)を始め、任意のピッチ・波長の音を共鳴させることができる。その理由は、すべての波長の音を自らの筐体の中に閉じ込めて折りたたんで増幅できるからである。
では、どのようにしてそれを行っているのか。増幅すべき音の波長・ピッチはいつ決定されるのか。その回答は筐体自身のディメンションそのものにある。筐体内にはおびただしい数の空気分子が存在する。これを外界と比べて20倍(25dB)以上の密度にまで増幅させていく。空気分子の最も遠いものは音速で互いに 2.2ミリ秒(mS)離れている。すべての分子同士の情報が互いに交換され、共鳴軌道が共有されるのに 2(~3)mS の時間が必要である。
時間差のある広がりのある環境で大合奏をするとき必要なものは、"アインザッツ"である。そしてアインザッツの必要時間(共鳴環境の初期構築時間)は、どうやら 2mSそのもののようである。どのトーンのピチカート音のデータを見ても、先頭におおよそ2mSの特別期間(アインザッツ期間)が存在するように見える。その後は所定のトーン周期が繰り返されている。ピチカートが発せられて後、2mS+周期 後には演奏される音のピッチがおおむね確定していると言えるようだ。

9BE1 cello resonance チェロ 響き レスポンス orbit overtone einsatz

9BE2 cello resonance チェロ 響き レスポンス orbit overtone einsatz

9BE3 cello resonance チェロ 響き レスポンス orbit overtone einsatz

9BE4 cello resonance チェロ 響き レスポンス orbit overtone einsatz

9BE5 cello resonance チェロ 響き レスポンス orbit overtone einsatz

9BE6 cello resonance チェロ 響き レスポンス orbit overtone einsatz